
GATS Page 1 – 12 G. Santor

GATS Companion

C & C++ Memory Layout
Author: Garth Santor
Editors: Trinh Hān, Lianne Wong
Version/Copyright: 1.6.0 (2023-09-15)

Overview
Where is the code, variables, literals, and other program elements stored in computer memory? Knowing how and where program

elements are stored, when and how they are assigned a location, and how long they persist, will help a developer understand:

• Memory use, and memory leaks.

• The efficiency of data access operations.

• The efficiency of data allocation and deallocations.

• The robustness of a memory reference.

Simplified Memory Model
In our examples we will use a simplified version of Microsoft Windows 32-bit default virtual address space. It is typical of 32-bit

virtual memory operating systems, like OS/X, Linux, and UNIX.

A virtual memory system uses hardware and software to map virtual memory addresses to physical memory addresses. Each user

program is broken up into memory pages (for example: 4KiB in size) that the operating system maps to physical pages in RAM with

the help of the CPU’s memory management unit (MMU). This allows our software to be programmed for an idealized memory

layout, and not the reality of actual physical memory layouts which can be discontiguous and be located on different devices like

GPUs.

An added benefit of this approach is that virtual memory pages from different processes can be mapped to physical memory pages

simultaneously (just not to the same physical memory pages). This allows multiple processes to share physical memory giving the

appearance of many programs running at the same time. Best of all, none of the program need to consider that other programs are

sharing the memory with them.

Virtual Address Space
A 32-bit address space provides 4GiB of physical memory, which maps to 4GiB of virtual memory.

The virtual address space is then divided into kernel space and user space.

The operating system will run in the protected kernel space, whereas our user process will run in the

unprotected process space.

Note the addresses for each space. The process space addresses always have a zero in the most

significant bit; the kernel space addresses always have a one in the most significant bit.

In Microsoft Windows, the boundary between process space, and kernel space can be adjusted with

‘4-gigabyte tuning’ (4GT) to provide a 3GiB process space, and a 1GiB kernel space. With

Windows 7, the amount can be customized to any process space size between 2048MiB (2GiB) and

3072MiB (3GiB).

Process Space
User processes (such as application programs) live in the process space. The process space has its own internal structure. Again, I’m

going to present a simplified, somewhat generic layout. The model assumes a single execution thread, again for simplicity.

Our process space model is broken into the following sections:

Kernel Space
(2GiB)

Process Space
(2GiB)

0xFFFFFFFF

0x80000000

0x7FFFFFFF

0x00000000

GATS Page 2 – 12 G. Santor

Interrupt Vector Table
The interrupt vector table is read-only block of addresses (read/write to the kernel) listing the interrupt handlers for the system. It is

not relevant to this discussion other than to recognize why our processes don’t start at location zero.

Text Segment
Alias: Code Segment

The text segment contains code, and depending on the compiler, literal

values are embedded along with the code.

Text Segments are placed below the heap and the stack to help prevent

memory overruns from corrupting the code. Where operating systems

support memory segment protection, the text segment can be tagged as

read-only.

Since text pages are never modified, the text segment can also be

shared between multiple identical processes.

Data Segment
The data segment contains variables that have a lifespan that begins

when the process is launched and extends until the process terminates.

It is in turn divided into three parts. The first part holds read-only

variables that are initialized when constructed, the second part holds

initialized modifiable variables, and the third holds uninitialized

variables. The size of the data segment is determined at compile time,

and that size is fixed for the life of the process.

Command Line & Environment
The command line & environment section resides at the top of the

process space. It is placed here since its size won’t be known until the

process is loaded and the command-line and environment information

are passed from the operating system.

Why is this? The operating system maintains an environment that

contains information about the context in which your program runs.

This includes the current working directory, environment variables,

and command-line arguments. These values usually have system wide

or account wide settings, but can be overridden by temporary changes

to the local shell, the user providing command-line arguments, or by invoking process functions such as spawn() that facilitate the

customization of the environment when programmatically launching an application.

The Heap & Stack
The heap and stack provide the system’s dynamic memory. Traditionally, the heap and stack share what memory remains after the

fixed allocations have completed. The heap supports free allocations from the pool of available RAM usually growing up from the

data segment. The stack supports LIFO allocations growing down from the bottom of the command line and environment segment.

The stack is normally managed implicitly by the process code and direct machine code support. Stack push and pop operations are

standard on CPUs, push moving the stack address towards address zero, pop moving the stack address away from zero.

The heap has a dedicated heap manager containing data structures and algorithms designed to track and manage the blocks of memory

allocated from the pool of memory it manages. The heap is different from the stack in that the memory allocations can occur

anywhere in the heap, and deallocations can occur in any order.

Memory allocated on the heap is not necessarily deallocated when the referencing variable goes out of scope. Heap allocations in C

and C++ must be explicitly deallocated. Failure to do so results in a memory leak. To prevent this, most objects that use dynamic

memory utilize destructors that implement the deallocation code. For general dynamic allocations, smart pointers (pointers that

deallocate what they point to when they go out of scope) are recommended.

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
Pr

o
ce

ss
 (

2G
iB

)

V
ir

tu
al

 M
em

o
ry

 (
4

G
iB

)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
er

n
el

 S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

GATS Page 3 – 12 G. Santor

Java and managed C++ (such as C++.NET) use garbage-collection instead of explicit deallocations. While this does prevent memory

leaks, it doesn’t completely resolve all memory problems. Developers, no longer worrying about memory leaks, often give up

thinking about memory issues at all. While the memory doesn’t technically leak, the same loss of memory can occur by holding on to

the memory block for longer than necessary. Managed languages have a memory hording problem! Programmers that don’t pay

attention to the scope of their reference variables may create them in too broad a scope that hold on to them much longer than is

necessary. While the memory block doesn’t leak, it none-the-less consumes resource that could be allocated elsewhere.

Deallocations can cause the heap to become discontiguous (i.e. there can be unallocated blocks of memory in between the allocated

blocks of memory). Small unallocated blocks can be difficult to reuse, as they can only be recycled by allocating them to the same

size or smaller block. The inefficiency caused by excessive number a small, unallocated blocks is called memory fragmentation.

C/C++ and Java Memory Allocation Examples
Let’s examine C and C++ code samples and connect the elements to their storage locations. Where the examples also apply to Java, it

will be noted.

Interpreting Java memory allocations is a little more difficult since the memory model spans the compiler and the JVM. Where C and

C++ compilers understand the system level memory model, the whole point of Java is to abstract the hardware as much as possible.

The Java compiler compiles to an abstract memory model which then maps to the memory model of that system’s JVM. JVM

developers have a fair amount of leeway in its implementation.

However, understanding Java allocations can be done in the context of C/C++ allocations (after all, the JVM is usually written in C).

Code [C, C++, Java]

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
a

l M
e

m
o

ry
 (

4
G

iB
)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
e

rn
e

l S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

The machine code of function main is stored in the text

segment.

int main() {

 return 0;

}

GATS Page 4 – 12 G. Santor

Literals [C, C++, Java]

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
a

l M
e

m
o

ry
 (

4
G

iB
)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
e

rn
e

l S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

Literals are handled in one of two ways: stored in the text
segment with the code that assigns the literal, or stored in the

data segment as a read-only entity.

The compiler chooses a storage location by several criteria:

1. Is the literal’s memory location referenced (e.g.

string literals are handled by pointing to the block of

memory containing the sequence of characters)?

2. Can the literal be embedded with the machine

instruction that performs the assignment?

int main() {

 string str = "Hello";

 int number = 42;

}

Local variables [C, C++, Java]

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
al

 M
em

o
ry

 (
4

G
iB

)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
er

n
el

 S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

The local variable number is allocated on the stack, and

deallocated when the function terminates. The literal 42

is embedded in the machine code of the text segment.

int main() {

 int number = 42;

}

GATS Page 5 – 12 G. Santor

Function parameters [C, C++, Java]

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
al

 M
em

o
ry

 (
4

G
iB

)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
er

n
el

 S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

Function parameters are passed on the stack. Parameters

can be passed by value, by reference, or by pointer. All

result in the parameter being placed on the stack.

void square(int x, int& result) {

 result = x * x;

}

int main() {

 int n;

 square(5, n);

}

Pass-by-value parameters have their parameters placed on
the stack. Pass-by-reference parameters have the address

of the calling scope variable placed on the stack.

Internally, reference parameters are passed to the function

as pointers.

Local, short-lived variables [C, C++, Java]

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
al

 M
em

o
ry

 (
4

G
iB

)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
er

n
el

 S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

The local variable sum is allocated on the stack as would

the local variable i. However, short-termed variables

such as the loop variant i are often never allocated in

RAM, but instead a CPU register is assigned to

implement the variable.

#include <iostream>

int main() {

 int sum = 0;

 for (int i = 0; i < 10; ++i)

 sum += i;

 std::cout << i << std::endl;

}

If enough free CPU registers are available, the sum

variable may also be implemented

GATS Page 6 – 12 G. Santor

Global variables [C, C++]

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
al

 M
em

o
ry

 (
4

G
iB

)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
er

n
el

 S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

The global variable global is allocated in the data

segment, specifically the uninitialized data segment.

#include <iostream>

int global;

int main() {

 int local;

}

Global variables – initialized [C, C++]

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
al

 M
em

o
ry

 (
4

G
iB

)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
er

n
el

 S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

The global variable global is allocated in the data

segment, specifically the initialized data segment. The

variable is initialized when the process loads if the data is

plain-old-data (POD).

#include <iostream>

int global = 42;

int main() {

 int local;

}

GATS Page 7 – 12 G. Santor

Reference variables (non-parameter) [C, C++]

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
al

 M
em

o
ry

 (
4

G
iB

)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
er

n
el

 S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

Reference variables declared in the same scope as the

variable they reference are merely aliases for the
referenced variable. As a result, they share the same

memory location as the variable they reference.

#include <iostream>

int global = 42;

int& globalRef = global;

int main() {

 int local;

 int& localRef = local;

}

Constants [C, C++]

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
al

 M
em

o
ry

 (
4

G
iB

)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
er

n
el

 S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

Constants generally follow the same allocation rules as

variables; global constants are placed in the Read-only

Initialized Data Segment; local constants on the stack.

However, optimizing compilers are free to analyze the

code. If the compiler can determine that there are no

references to the location of the constant (only the value
of the constant is used), then constant can be implemented

as if it were a literal.

const int cglobal = 42;

const char str[] = "constant";

int main() {

 const int clocal = 5;

}

GATS Page 8 – 12 G. Santor

constexpr [C++]

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
al

 M
em

o
ry

 (
4

G
iB

)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
er

n
el

 S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

C++ 11’s constexpr expression appears like a constant

in the source code, but like a literal in the machine code.

Constant expressions are guaranteed to be evaluated at

compile time.

#include <iostream>

int main() {

 constexpr int clocal = 5;

}

Local static variables [C, C++]

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
al

 M
em

o
ry

 (
4

G
iB

)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
er

n
el

 S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

Local static variables are treated like local variables for

their visibility scope, but like global variables for their

location and lifespan.

#include <iostream>

int count() {

 static int c = 0;

 return ++c;

}

int main() {

 static int n;

 n = count();

}

GATS Page 9 – 12 G. Santor

Dynamic memory/pointers [C, C++, Java]

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
al

 M
em

o
ry

 (
4

G
iB

)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
er

n
el

 S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

Dynamic memory allocators (new, malloc, etc.) allocate

memory on the heap. The referencing variable (pointer)

is handled like a typical variable.

int main() {

 int* p = new int[10];

}

Note that the memory allocated in C/C++ is not disposed

of automatically. You’ll need to call delete to return

the memory to the heap. Java will garbage-collection the

object once it has determined that the object is no longer

being referenced.

Dynamic objects [C++]

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
al

 M
em

o
ry

 (
4

G
iB

)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
er

n
el

 S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

Dynamic objects such as STL container classes have a

fixed portion and a dynamic portion. The fixed portion is

handled like all other variables, the dynamic portion is on

the heap.

vector<int> gv(10);

int main() {

 vector<int> v(10);

}

GATS Page 10 – 12 G. Santor

Class attributes [C++, Java]

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
al

 M
em

o
ry

 (
4

G
iB

)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
er

n
el

 S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

Classes allocate with the same rules as primitive data

types with a few twists. If the object is declared locally,
then the attributes are allocated on the stack. If the object

is declared globally or static, its attributes are allocated in

the data segment.

class Foo {

 int a = 0;

};

Foo bar;

int main() {

 Foo barLocal;

 static Foo bars;

}

The class definition itself is not stored in memory. It’s

methods however are stored in the text segment, as they

are code.

Static class attributes [C++, Java]

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
al

 M
em

o
ry

 (
4

G
iB

)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
er

n
el

 S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

Static class attributes override the class’s normal

allocation location and follow the rules of global variable

allocations.

class Foo {

 int a;

 static int b;

};

int main() {

 Foo bar;

}

GATS Page 11 – 12 G. Santor

Appendix A: C Memory Layout

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
al

 M
e

m
o

ry
 (

4
G

iB
)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
e

rn
e

l S
p

ac
e

 (
2

G
iB

)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

Code

Literals

Local variables

Function Parameters

Uninitialized Global

variables

Initialized Global

variables

Local static variables

Dynamic (malloc,

calloc, realloc, new)

GATS Page 12 – 12 G. Santor

Terminology
POD Plain-old-data. A variable that can be copied by duplicating the binary representation of the

variable. No additional process is required to copy the value.

process A running program.

virtual memory A logical memory system that maps virtual memory locations to physical memory locations.

This permits more than one process to operate in memory at the same time, without the

process knowing of the other processes existence.

References
• C dynamic memory allocation – https://en.wikipedia.org/wiki/C_dynamic_memory_allocation

References

Document History
Version Date Activity

1.0.0 2018-01-30 Document created.

1.3.0 2019-01-20 forgotten

1.4.0 2019-01-27 forgotten

1.5.0 2019-01-27 Forgotten

1.6.0 2023-09-15 Converted to 2023 document template

https://en.wikipedia.org/wiki/C_dynamic_memory_allocation

